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Nonparametric Model Calibration Estimation
in Survey Sampling

Giorgio E. MONTANARI and M. Giovanna RANALLI

Calibration is commonly used in survey sampling to include auxiliary information at the estimation stage of a population parameter. Cali-
brating the observation weights on population means (totals) of a set of auxiliary variables implies building weights that when applied to the
auxiliaries give exactly their population mean (total). Implicitly, calibration techniques rely on a linear relation between the survey variable
and the auxiliary variables. However, when auxiliary information is available for all units in the population, more complex modeling can be
handled by means of model calibration; auxiliary variables are used to obtain fitted values of the survey variable for all units in the popu-
lation, and estimation weights are sought to satisfy calibration constraints on the fitted values population mean, rather than on the auxiliary
variables one. In this work we extend model calibration considering more general superpopulation models and use nonparametric methods
to obtain the fitted values on which to calibrate. More precisely, we adopt neural network learning and local polynomial smoothing to esti-
mate the functional relationship between the survey variable and the auxiliary variables. Under suitable regularity conditions, the proposed
estimators are proven to be design consistent. The moments of the asymptotic distribution are also derived, and a consistent estimator of the
variance of each distribution is then proposed. The performance of the proposed estimators for finite-size samples is investigated by means
of simulation studies. An application to the assessment of the ecological conditions of streams in the mid-Atlantic highlands in the United
States is also carried out.

KEY WORDS: Auxiliary information; Generalized regression estimator; Local polynomials; Model-assisted approach; Neural networks;
Nonparametric regression.

1. INTRODUCTION

Availability of auxiliary information to estimate descriptive
parameters of a survey variable in a finite population has be-
come fairly common. Census data, administrative registers, pre-
vious surveys, and remote sensing provide a wide and grow-
ing range of variables that can be used to increase the pre-
cision of estimation procedures. A simple way to incorporate
known population means (or totals) of auxiliary variables is
through ratio and regression estimation. More general situa-
tions are handled by generalized regression estimation (Särndal
1980; Särndal, Swensson, and Wretman 1992) and calibration
estimation (Deville and Särndal 1992). Those methods have
been proposed within a model-assisted approach to inference,
where a working model ξ is assumed to describe the relation-
ship between the auxiliary variables and the survey variable. Es-
timators are sought to have desirable properties, like asymptotic
design unbiasedness (i.e., unbiasedness over repeated sampling
from the finite population) and design consistency, irrespective
of whether the working model is correctly specified or not, and
to be particularly efficient if the model holds true.

Nonetheless, all of these techniques refer to essentially a lin-
ear regression model for the underlying relationship between
the survey and the auxiliary variables. In this framework, con-
cern is mainly with efficient prediction of the values taken by
the survey variable in nonsampled units, rather than with in-
terpretation of the relationship between the variable of interest
and the auxiliary ones. As a consequence, the introduction of
more general models and flexible techniques to obtain predic-
tions seems of great interest. To this purpose, Wu and Sitter
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(2001) introduced model calibration, where nonlinear paramet-
ric regression models and generalized linear regression models
are used to obtain model-assisted estimators by generalizing the
calibration method of Deville and Särndal (1992).

Further flexibility is also allowed by assuming a nonpara-
metric class of models for ξ . Kernel smoothing was adopted by
Kuo (1988) in a model-based approach to inference. Dorfman
(1992), Dorfman and Hall (1993), and Chambers, Dorfman, and
Wehrly (1993) studied and extended these techniques. Breidt
and Opsomer (2000) first considered nonparametric models
for ξ within a model-assisted framework and obtained a local
polynomial regression estimator as a generalization of the ordi-
nary generalized regression estimator.

Multivariate auxiliary information can be accounted for in
the aforementioned proposals. However, the problem of the
sparseness of the regressors’ values in the design space makes
kernel methods and local polynomials inefficient in practice.
This problem is known in literature as the curse of dimension-
ality; in high dimensions sample points sparsely populate the
space, neighborhoods that contain even a small number of ob-
servations have large radii, and most sample points are close
to an edge of the space. Local approximators in such a context
run into problems (e.g., Friedman 1994). Attempts to handle
multivariate auxiliary information make use of recursive cov-
ering in a model-based perspective (Di Ciaccio and Montanari
2001) and of generalized additive modeling in a model-assisted
framework (Opsomer, Breidt, Moisen, and Kauermann 2003).
All of these new methods require knowledge of the value taken
by the auxiliary variables for all units in the population. Even
though more restrictive, this requirement nowadays can be met
whenever information for a population can be combined at the
individual level from different sources (e.g., census data, ad-
ministrative registers, remote sensing).

In this article we combine model calibration estimation with
nonparametric methods and propose nonparametric model cal-
ibration estimators for a finite population mean. Calibration

© 2005 American Statistical Association
Journal of the American Statistical Association

December 2005, Vol. 100, No. 472, Theory and Methods
DOI 10.1198/016214505000000141

1429

D
ow

nl
oa

de
d 

by
 [

N
IH

 L
ib

ra
ry

] 
at

 1
2:

02
 2

0 
D

ec
em

be
r 

20
13

 



1430 Journal of the American Statistical Association, December 2005

and nonparametric methods have been considered together also
by Chambers (1996, 1998) in a model-based context. Here we
adopt a model-assisted approach to inference and extend model
calibration like that of Wu and Sitter (2001) using nonparamet-
ric methods to obtain the fitted values on which to calibrate.
More precisely, we consider neural network learning and local
polynomial smoothing to estimate the functional relationship
between the survey variable and the auxiliary variables. Op-
somer, Moisen, and Kim (2001) sketched this idea as a way
to produce survey weights from a nonlinear generalized addi-
tive model fit. Although Nordbotten (1996) used neural net-
works for imputation with auxiliary information coming from
administrative registers, the use of neural networks for model
calibration is new and allows for more flexible prediction and
straightforward insertion of multivariate auxiliary information.

In principle, any nonparametric method existing in the lit-
erature can be used to recover fitted values for the survey
variable on nonsampled units. However, the treatment here is
limited to neural networks and local polynomials as methods
for which theoretical properties for the resulting estimators
can be established. Moreover, for local polynomials, an exist-
ing methodology in the same framework is available, whereas
neural networks are widely used in practice, and software is
commonly available that can easily handle multivariate data.

The treatment proceeds as follows. In Section 2 we briefly re-
view calibration and the generalized regression estimation tech-
nique. Then we introduce the neural network model calibration
estimator in Section 3. We state the design theoretical properties
of this estimator in Section 4. In Section 5 we introduce the lo-
cal polynomial model calibration estimator and establish its the-
oretical properties. In Sections 6.1 and 6.2 we report the results
of simulation experiments carried on to study the finite-sample
performance of the proposed estimators, and in Section 6.3 we
consider nonparametric model calibration for assessment of the
ecological condition of streams in the mid-Atlantic highlands.
We give some concluding remarks in Section 7.

2. CALIBRATION TECHNIQUES AND REGRESSION

Consider a finite population U = {1, . . . ,N}. For each unit
in the population, we assume that the value of a vector x of Q
auxiliary variables is available (e.g., from census data, admin-
istrative registers, previous surveys, or remote sensing); hence
the vector xi = (x1i, . . . , xqi, . . . , xQi), is known ∀ i ∈ U . A sam-
ple s of size n is drawn without replacement from U accord-
ing to a probabilistic sampling plan with inclusion probabilities
πi and πij, for all i, j ∈ U . Let δi = 1 when i ∈ s and δi = 0
otherwise; then we have that E(δi) = πi, where expectation is
taken with respect to the sampling design. The survey variable
y is observed for each unit in the sample, and hence yi is known
for all i ∈ s. The goal is to estimate the population mean of
the survey variable, that is, Ȳ = N−1 ∑N

i=1 yi. For ease of no-
tation in what follows we assume that the design is such that∑n

i=1 π−1
i = N; generalization to cases for which the latter does

not hold is straightforward and available from the authors.
Deville and Särndal (1992) first introduced the notion of a

calibration estimator. This is defined to be a linear combina-
tion of observations ˆ̄Yc = ∑n

i=1 wiyi with weights chosen to
minimize an average distance from the basic design weights

di = 1/πi. Minimization is constrained to satisfy a set of cal-
ibration equations, N−1 ∑n

i=1 wixi = x̄, where x̄ is the known
vector of population means for the auxiliary variables. Al-
though alternative distance measures are available from Deville
and Särndal (1992), all resulting estimators are asymptotically
equivalent to the one obtained from minimizing the chi-squared
distance function

�s =
n∑

i=1

(wi − di)
2

diqi
, (1)

where qi’s are known positive weights unrelated to di. This
choice provides the following calibration estimator as the so-
lution to the minimization problem:

ˆ̄Yc = ˆ̄Y + (x̄ − ˆ̄x)′β̂, (2)

where β̂ = (
∑n

i=1 diqixix′
i)

−1 ∑n
i=1 diqixiyi, and ˆ̄Y = N−1 ×

∑n
i=1 diyi and ˆ̄x = N−1 ∑n

i=1 dixi are the Horvitz–Thompson
estimators of Ȳ and x̄. This definition of ˆ̄Yc is equivalent to a
generalized regression estimator, which is derived as a model-
assisted estimator assuming a linear regression model, with
variance structure given by a diagonal matrix with elements
1/qi (Deville and Särndal 1992, sec. 1). Examples of the role
of the constants qi have also been given by Deville and Särndal
(1992) and Särndal (1996). Hence ˆ̄Yc implicitly relies on a lin-
ear relationship between the auxiliary variables and the sur-
vey variable. By noting that “it is the relationship between
y and x, hopefully captured by the working model, that de-
termines how the auxiliary information should best be used,”
Wu and Sitter (2001) proposed to generalize the calibration
procedure by means of model calibration. In particular, they
considered generalized linear models and nonlinear regression
models for ξ such that Eξ ( yi) = µ(xi, θ), where θ is an un-
known superpopulation parameter vector, µ(·) is a known func-
tion of xi and θ , and Eξ denotes expectation with respect to
ξ . The proposed model calibration estimator for Ȳ is ˆ̄Ymc =
N−1 ∑n

i=1 wiyi, with weights again sought to minimize the dis-
tance measure �s in (1) under the new constraints

∑n
i=1 wi = N

and N−1 ∑n
i=1 wiµ̂i = N−1 ∑N

i=1 µ̂i, where µ̂i = µ(xi, θ̂) and
θ̂ is a design-consistent estimator for θ . In this context, cali-
bration is performed with respect to the population mean of the
fitted values µ̂i, instead of the population mean of the auxiliary
variables as for ˆ̄Yc. The resulting estimator can be written as

ˆ̄Ymc = ˆ̄Y + 1

N

{
N∑

i=1

µ̂i −
n∑

i=1

diµ̂i

}

β̂mc, (3)

where β̂mc = ∑
i∈s diqi(µ̂i − µ̆)( yi − y̆)/

∑
i∈s diqi(µ̂i − µ̆)2,

y̆ = ∑
i∈s diqiyi/

∑
i∈s diqi, and µ̆ = ∑

i∈s diqiµ̂i/
∑

i∈s diqi.
Wu (2003) showed that the resulting estimator is optimal among
the class of calibration estimators, in that the expected value of
the asymptotic design variance under the model and any regular
sampling design with fixed sample size reaches its minimum.

Following another direction to allow for more complex mod-
eling than linear models, Breidt and Opsomer (2000) proposed
a model-assisted nonparametric regression estimator based on
local polynomial smoothing. It is based on a nonparametric su-
perpopulation model ξ for which

yi = m(xi) + εi for i = 1,2, . . . ,N, (4)
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where m(·) is a smooth function of a single auxiliary variable x,
the εi’s are independent random variables with mean 0 and
variance v(xi), and v(·) is smooth and strictly positive. A lo-
cal polynomial kernel estimator of degree p is used to obtain
fitted values. Let Kh(u) = h−1K(u/h), where K denotes a con-
tinuous kernel function and h is the bandwidth. The role of h on
the efficiency of the final estimator is discussed in Section 6.4.
Then a sample-based consistent estimator of the local polyno-
mial estimator for the unknown m(xi) is given by

m̂i = e′
1(X

′
siWsiXsi)

−1X′
siWsiys, (5)

where e1 = (1,0, . . . ,0)′ is a column vector of length p + 1,
ys = ( y1, . . . , yn)

′, Wsi = diag{djKh(xj − xi)}j∈s, and Xsi =
[1 xj − xi · · · (xj − xi)

p ]j∈s. The local polynomial regres-
sion estimator for Ȳ is given by

ˆ̄Ylp = ˆ̄Y + 1

N

{
N∑

i=1

m̂i −
n∑

i=1

dim̂i

}

. (6)

Among other desirable properties, the estimator (6) has been
proven to be calibrated with respect to the auxiliary variables
(Breidt and Opsomer 2000, sec. 2), whereas it is not calibrated
with respect to the fitted values m̂i. Moreover, as noted in Sec-
tion 1, accounting for more than one auxiliary variable could
represent a problem in practice. In contrast, model calibration
estimators proposed by Wu and Sitter (2001) rely on classes
of superpopulation models that could be usefully enlarged to
account for more complex model structures. In the following
sections we introduce two nonparametric model calibration es-
timators of the population mean.

3. A NEURAL NETWORK MODEL
CALIBRATION ESTIMATOR

Neural networks are very popular learning methods. Among
others, Ripley (1996), Hastie, Tibshirani, and Friedman (2001),
and Ingrassia and Davino (2002) have shown that this tech-
nique is suitable to a wide range of problems. Theoretical work
by Cybenko (1989), Funahashi (1989), and Barron (1993) has
provided evidence of their universal approximation property of
continuous functions. We use a feedforward neural network
with skip-layer connections, whose typical structure is rep-
resented in Figure 1. Three components are present in such
a model: inputs, output, and an intermediate set of hidden
variables—neurons—that transform in a nonlinear fashion the
information coming from the inputs to the output. The three sets
of variables are linked only by one-way connections, whose di-
rection is indicated by the arrows. No feedback is allowed, the
three layers are totally connected, and there is no link between
units belonging to the same layer. Skip-layer connections link
straightforwardly the input variables to the output. Each con-
nection is weighted. A linear combination of the inputs is the in-
put to each hidden unit; at this level a constant is added, and an
activation function φ(·) is applied to get outgoing signals to the
output. To a linear combination of these signals, another con-
stant is added to provide the final output. Denoting with f (xi)

the output, the foregoing structure can be formalized as

f (xi) =
Q∑

q=1

βqxqi +
M∑

m=1

amφ

( Q∑

q=1

γqmxqi + γ0m

)

+ a0, (7)

Figure 1. Schematic of a Single Hidden Layer Feedforward Neural
Network With Skip Layer Connections.

where M is the number of neurons at the hidden layer; am ∈ R
for m = 1, . . . ,M is the weight of the connection of the mth
hidden node with the output; and γqm ∈ R for m = 1, . . . ,M
and q = 1, . . . ,Q is the weight attached to the connection be-
tween the qth input and the mth hidden node. Scalars a0 and
γ0m for m = 1, . . . ,M represent the activation levels of the out-
put and the M neurons. The activation function φ(·) is usu-
ally a sigmoidal function, an S-shaped function that assumes
monotonically increasing values between 0 and 1 as the value
of its argument goes from −∞ to +∞. Finally, by allowing
skip-layer connections from the inputs to the output, βq for
q = 1, . . . ,Q denotes the weight attached to each direct connec-
tion. Overall, to a basic linear structure provided by the skip-
layer connections, nonlinear components are added to enable
fitting of more complex regression functions (see, e.g., Ripley
1996, chap. 5). Although feedforward networks with more than
one layer of hidden units and more complicated networks that
allow feedback of information can be specified, for the sake of
simplicity we deal only with the presented structure, which is
commonly used for a wide variety of applications and has the
appealing feature of being easily implemented using the nnet( )
function in R and S–PLUS.

Now, going back to the issue of estimating Ȳ , let us assume
that the relationship between the survey variable and the auxil-
iary variables can be described by the following superpopula-
tion model:






Eξ ( yi) = f (xi) for i = 1, . . . ,N

Vξ ( yi) = v(xi) for i = 1, . . . ,N

Cξ ( yi, yj) = 0 for i �= j,

(8)

where Vξ and Cξ denote variance and covariance, with respect
to ξ , f (xi) is function (7), and v(·) is smooth and strictly pos-
itive. Assuming M to be fixed, we denote by θ the set of all
parameters of the network and write

θ = (β1, . . . , βQ,a0,a1, . . . ,aM, γ01, . . . , γ0M,γ 1, . . . ,γ M)′,

(9)

where γ m = (γ1m, . . . , γQm) for m = 1, . . . ,M. Then f (xi) in (8)
becomes f (xi; θ), and θ is a vector of unknown superpopulation
parameters. Let θ∗ denote the unknown true value of θ .
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Remark 1. Model assumptions in (8) formally restrict the
regression function to belong to a specified class of nonlin-
ear parametric functions. Nevertheless, the universal approxi-
mation property of neural networks proved by Cybenko (1989)
and Funahashi (1989) shows that any continuous function can
be uniformly approximated on compact sets (i.e., closed and
bounded subsets of RQ) by increasing the size of the hidden
layer M in (7). Barron (1993) proved that the approximation er-
ror for a fixed M is bounded by a term of order O(1/M) for all
functions having a Fourier representation. A detailed review of
the theoretical properties of feedforward neural networks was
given by Ripley (1996).

To estimate the regression function (7), we follow the ap-
proach of Wu and Sitter (2001); that is, we need to define a
design-consistent estimate of θ∗ and thus of the regression func-
tion at xi, for i = 1, . . . ,N. To that purpose, we first seek an
estimate θ̃ of the model parameter θ∗ based on the entire finite
population. Let us define the population parameter θ̃ as the min-
imizer in the parameter space 	 of the weighted sum of squared
residuals with a weight decay penalty term, that is,

θ̃ = arg min
θ∈	

{
N∑

i=1

1

vi
( yi − f (xi, θ))2 + λ

r∑

l=1

θ2
l

}

, (10)

where vi for i = 1, . . . ,N are known positive weights assumed
to be proportional to the variance function v(xi), r is the dimen-
sion of the vector θ , and λ is a tuning parameter. The weight
decay penalty is analogous to ridge regression introduced for
linear models as a solution to collinearity. Larger values of λ

tend to favor approximations corresponding to small values of
the parameters and thus shrink the weights toward 0 to avoid
overfitting. Here we assume that M and λ have been fixed in
advance to hopefully provide a good fit at the population level.
The issue of selecting values for λ and M is discussed in Sec-
tion 6.4. Then θ̃ is obtained as the solution of the following
equations:

N∑

i=1

{

( yi − f (xi, θ))
∂f (xi, θ)

∂θ

1

vi
− λ

N
θ

}

= 0. (11)

The sum on the left side of (11) is a population total; then a
design consistent estimate θ̂ of θ̃ is defined as the solution of the
design-based sample version of (11), that is, θ̂ is the solution to

n∑

i=1

di

{

( yi − f (xi, θ))
∂f (xi, θ)

∂θ

1

vi
− λ

N
θ

}

= 0. (12)

Lemma A.1 in the Appendix shows that θ̂ = θ̃ + Op(n−1/2),
where the order statement is considered with respect to the de-
sign. Once the estimates θ̂ are obtained, the available auxiliary
information is included in the estimator through the fitted val-
ues f̂i = f (xi, θ̂), for i = 1, . . . ,N. Toward this end, we define

the neural network model calibration estimator of Ȳ as ˆ̄Ymc
nn =

N−1 ∑n
i=1 wiyi, where the calibrated weights wi are sought to

minimize the distance function �s in (1) under the constraints
N−1 ∑n

i=1 wi = 1 and N−1 ∑n
i=1 wi f̂i = N−1 ∑N

i=1 f̂i. The pro-
posed estimator follows to be

ˆ̄Ymc
nn = ˆ̄Y + 1

N

{
N∑

i=1

f̂i −
n∑

i=1

di f̂i

}

β̂nn, (13)

where

β̂nn =
∑n

i=1 diqi( f̂i − f̆ )( yi − y̆)
∑n

i=1 diqi( f̂i − f̆ )2
(14)

and f̆ = ∑n
i=1 diqi f̂i/

∑n
i=1 diqi.

Estimator (13) mimics estimator ˆ̄Ymc in (3) and includes a
straightforward extension to neural networks of estimator (6)
proposed by Breidt and Opsomer (2000) by setting β̂nn = 1.
Here we add the supplementary regression step performed
with β̂nn. In fact, ˆ̄Ymc

nn can be seen as a generalized regression
estimator based on the working model Eξ ( yi) = α + βf (xi).
Hence ˆ̄Ymc

nn uses estimates of f (xi) as the auxiliary variable
in a generalized regression procedure. Sample-based fits f̂i
are design-consistent estimates of population fits f̃i = f (xi, θ̃)

(Lemma A.2 in the App.). If the nonparametric technique pro-
vides model-unbiased estimates of the mean function f (x) at the
population level, then this supplementary calibration step would
not provide gains in efficiency with respect to setting the value
of β̂nn equal to 1. However, in cases in which the nonparamet-
ric technique provides biased estimates of the mean function or
the working model is not valid, then this step makes sense in a
model-assisted approach and will asymptotically lead to more
efficient estimates for the population mean of y.

We assess properties of estimator in (13) in the next section.
Here we note that the presence of weights di in the least squares
procedure in (12) makes f̂i a design-consistent estimator of the
population fit f̃i. The latter is a finite population parameter in
as far as the number of hidden units M and weight decay para-
meter λ are given and fixed. This procedure of deriving fitted
values mirrors that used for the development of the generalized
regression estimator, to which the proposed estimator reverts as
both the number of units in the hidden layer M and the value
of λ go to 0.

4. ASSUMPTIONS AND PROPERTIES OF ˆ̄Ynn
mc

To study the design properties of ˆ̄Ymc
nn , we use Taylor series

approximations of the fitted values f̂i. Toward this end, we need
a set of regularity conditions on the behavior of θ̃ and θ̂ and of
the function f (·) in the asymptotic framework. We assume that
there is a sequence of finite populations indexed by ν and a cor-
responding sequence of sampling designs. Both the population
size Nν and the sample size nν approach infinity as ν → ∞.
More details for the asymptotic framework have been given by
Isaki and Fuller (1982). We drop the subscript “ν” for ease of
notation. To prove our theoretical results, we make the follow-
ing assumptions:

(a) For each ν, the xi’s are iid from an unknown and
fixed distribution F(x) = ∫ x1

−∞
∫ x2
−∞ · · · ∫ xQ

−∞ g(t1, t2, . . . , tQ)dt,
where g(·) is a strictly positive density whose support is a com-
pact subset of RQ.

(b) For each ν, conditioning on the values xi, the superpop-
ulation model is as in (8). Hence the xi’s are considered fixed
with respect to the superpopulation model ξ .

(c) The survey variable has bounded fourth moment with ξ -
probability 1.
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(d) The sampling rate is bounded, that is,

lim sup
ν→∞

nN−1 = π,

where π ∈ (0,1).
(e) For any study variable z with bounded fourth moment,

the sampling design p(s) is such that the Horvitz–Thompson
estimator of the population mean Z̄ is asymptotically normally
distributed and is design-consistent with variance O(n−1); the
latter can be consistently estimated by the Horvitz–Thompson
variance estimator.

(f ) The parameter space 	 is a compact set, and θ∗ is an
interior point of 	 and is irreducible; that is, for m,m′ �= 0,
none of the following three cases holds (Hwang and Ding
1997): am = 0 for some m = 1, . . . ,M; γ m = 0 for some m =
1, . . . ,M; and (γ m, γ0m) = ±(γ m′ , γ0m′) for some m �= m′.

(g) The activation function φ in (7) is a symmetric sig-
moidal function differentiable to any order; moreover, the class
of functions {φ(bt + b0),b > 0} ∪ {φ ≡ 1} is assumed to be
linearly independent. The logistic activation function φ(t) =
[1 + exp(−t)]−1 fulfills these requirements; other examples of
sigmoidal functions satisfying these conditions have been given
by Hwang and Ding (1997).

Remark 2. Sufficient conditions for the existence of a sam-
pling design as in assumption (e) have been given by, for ex-
ample, Fuller (1975), Fuller and Isaki (1981), Kott (1990), and
Thompson (1997, chap. 3).

Remark 3. Assumptions (f ) and (g) concern the neural
network structure and allow identifiability of the network
parameters to some extent. In fact, every neural network is
unidentifiable, in the sense that there are transformations on the
parameter vector θ that leave f (x; θ) invariant. Nonetheless,
if we rewrite (9) as θ = {β1, . . . , βQ,a0,α1, . . . ,αM}, where
αm = (am, γ0m,γ m) for m = 1, . . . ,M, then, under assumptions
(f ) and (g) there are only two kinds of transformations that
leave f (x; θ) invariant (Hwang and Ding 1997, thm. 2.3):

• Permutation: The function is unchanged if we permu-
te αm’s

• Sign flips: Because the activation function is odd, am ×
φ(γ mx + γ0m) = am − amφ(−γ mx − γ0m), and hence the
pair of parameters (a0,α1, . . . ,αm, . . . ,αM) and (a0 +
am,α1, . . . ,−αm, . . . ,αM) give exactly the same value
of f (x; θ).

These two transformations generate a family of 2MM! ele-
ments. For all transformations τ in this family, it is f (x; θ) =
f (x; τ(θ)). Each transformation can be characterized as being a
composite function of {τ1, . . . , τM}, where

τ1(a0,α1, . . . ,αM)

= (a0 + a1,−α1,α2, . . . ,αM),
(15)

τm(a0,α1, . . . ,αM)

= (a0,αm,α2, . . . ,αm−1,α1,αm+1, . . . ,αM)

for m = 2, . . . ,M.

Thus assumptions (f ) and (g) allow θ to be identifiable up to
the family of transformations generated by (15). That is, if there
exists another θ̆ such that f (x; θ̆) = f (x; θ), then there exists a

transformation generated by (15) that transforms θ̆ to θ . This
allows for overcoming identifiability problems by constructing
parameter subspaces within which θ is identifiable. Hwang and
Ding (1997) proposed such a construction when the parameters
are estimated without weight decay. Extension of their method
to situations in which λ �= 0 is straightforward, because for suf-
ficiently large N, all of the minimizers of (10) tend to be the
same as those of

∑N
i=1( yi − f (xi, θ))2/v(xi).

Let Ti for i = 1, . . . , k, where k = 2MM! be the transforma-
tions generated by (15). Then let θ∗

i = Ti(θ
∗), for i = 1, . . . , k,

be all of the transformations of the true parameter θ∗. Because
θ∗ is irreducible, they are all distinct. Therefore, balls B(θ∗

i , ri)

centered at θ∗
i with radius ri > 0 may be chosen to be disjoint.

For sufficiently large N, all of the least squares estimates {θ̃ i}
will be in B = ⋃k

i=1 B(θ∗
i ; ri), with ξ -probability 1 (Hwang

and Ding 1997). Therefore, B can be assumed to be the para-
meter space without loss of generality, and each ball B(θ∗

i , ri)

will be a subset 	i of the parameter space. If we restrict to
	1 = B(θ∗

1; r1), then θ̃1 denotes the estimate of θ∗
1; for a suffi-

ciently large N, there exists a radius r1 such that θ̃1 is uniquely
defined, with ξ -probability 1. Hence, by restricting to 	1, the
parameter θ∗

1 is identifiable.

The properties of ˆ̄Ymc
nn are stated in the following theorem,

the proof of which relies on some technical lemmas collected
in the Appendix.

Theorem 1. Assume that (a)–(g) hold. Partition the parame-
ter space as in Remark 3 and restrict to 	1, say. Then we have
the following results:

1. Design consistency. ˆ̄Ymc
nn is consistent for Ȳ in the sense

that limν→∞ P(| ˆ̄Ymc
nn − Ȳ| < ε) = 1 with ξ -probability 1 and for

any fixed ε > 0.

2. Asymptotic normality. The asymptotic distribution of ˆ̄Ymc
nn

is such that

ˆ̄Ymc
nn − Ȳ

√

V( ˜̄Ymc
nn )

→ N(0,1), (16)

where

V( ˜̄Ymc
nn ) = 1

N2

N∑

i

N∑

j

(πij − πiπj)
( yi − f̃iβ̃nn)

πi

( yj − f̃jβ̃nn)

πj
,

(17)
˜̄Ymc

nn is the generalized difference estimator

˜̄Ymc
nn = ˆ̄Y +

{

N−1
N∑

i=1

f̃i − N−1
n∑

i=1

di f̃i

}

β̃nn, (18)

β̃nn =
∑N

i=1 qi( f̃i − f̄ )( yi − Ȳ)
∑N

i=1 qi( f̃i − f̄ )2
, (19)

and f̄ = N−1 ∑N
i=1 f̃i.

For the proof, see the Appendix.
The next result shows that the variance of the asymptotic

distribution of ˆ̄Ymc
nn can be estimated consistently under mild

assumptions. This result also holds for the estimator of the vari-
ance of the ordinary model calibration estimators proposed by
Wu and Sitter (2001, sec. 3.2) for fixed-size sampling designs.
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Theorem 2. Assume that (a)–(g) hold. Partition the parame-
ter space as in Remark 3 and restrict to 	1, say. Then

v( ˆ̄Ymc
nn ) = 1

N2

n∑

i

n∑

j

πij − πiπj

πij

ei

πi

ej

πj
, (20)

where ei = yi − f̂iβ̂nn, is design consistent for V( ˜̄Ymc
nn ).

For the proof see the Appendix.
In the following corollary, the pivotal considered in (16) is

modified to account for this result.

Corollary 1. Assume that (a)–(g) hold. Partition the para-
meter space as in Remark 3 and restrict to 	1, say. Then,

as ν → ∞, ( ˆ̄Ymc
nn − Ȳ)/

√
v( ˆ̄Ymc

nn ) → N(0,1), where v( ˆ̄Ymc
nn ) is

given in (20).

Proof. The result follows from Theorem 2, for which

v( ˆ̄Ymc
nn )/V( ˜̄Ymc

nn ) converges in probability to 1.

5. A LOCAL POLYNOMIAL MODEL
CALIBRATION ESTIMATOR

In this section nonparametric model calibration is performed
by means of local polynomials. Here we add in the definition
of the local polynomial regression estimator in (6) a regres-
sion step to gain the property of calibration with respect to the
working model. The steps to define this estimator mirror the
ones used to obtain ˆ̄Ymc

nn , whereas the methodological assump-
tions are taken from the derivation of ˆ̄Ylp. As a consequence,
we consider a single auxiliary variable to make the theory more

tractable. As for ˆ̄Ylp, the properties of the estimator are expected
to hold for multivariate xi; however, the curse of dimensional-
ity would make practical applications complicated. Generalized
additive models (Opsomer et al. 2001, 2003) can then be con-
sidered.

We assume that the finite population of the yi’s conditioned
on the xi’s is a realization from a superpopulation ξ described
by model (4). The local polynomial model calibration estima-
tor, ˆ̄Ymc

lp = N−1 ∑n
i=1 wiyi, is obtained by seeking weights wi

that minimize the distance measure �s in (1), under the con-
straints N−1 ∑n

i=1 wi = 1 and N−1 ∑n
i=1 wim̂i = N−1 ∑N

i=1 m̂i,

where fitted values m̂i are obtained by means of (5). Minimiza-

tion problem is solved as for ˆ̄Ymc
nn and provides as the resulting

estimator

ˆ̄Ymc
lp = ˆ̄Y + 1

N

{
N∑

i=1

m̂i −
n∑

i=1

dim̂i

}

β̂lp, (21)

where β̂lp takes the same form as β̂nn in (14) but with fitted
values m̂i obtained by means of local polynomial smoothing in-
stead of neural networks. With respect to ˆ̄Ylp in (6), the added
calibration step performed by β̂lp will asymptotically make ˆ̄Ymc

lp

more efficient than ˆ̄Ylp when population fits for y are biased,
as we noted in the discussion after (13). In the context of lo-
cal polynomials, this might happen for local constant fits with
larger bandwidths.

Theorem 3 states that ˆ̄Ymc
lp is asymptotically design unbiased

and consistent. Moreover, its asymptotic distribution is derived

from that of the generalized difference-type estimator

˜̄Ymc
lp = ˆ̄Y +

{

N−1
N∑

i=1

m̃i − N−1
n∑

i=1

dim̃i

}

β̃lp, (22)

where m̃i, for i = 1, . . . ,N, are the fitted values at the population
level defined as

m̃i = e′
1(X

′
iWiXi)

−1X′
iWiy. (23)

In the latter, y = ( y1, . . . , yN)′, Wi = diag{Kh(xj − xi)}j∈U , and
Xi = [1 xj − xi · · · (xj − xi)

p ]j∈U ; further, β̃lp =
∑N

i=1 qi(m̃i − m̄)( yi − Ȳ)/
∑N

i=1 qi(m̃i − m̄)2 and m̄ = N−1 ×
∑N

i=1 m̃i. The asymptotic framework is as in Section 4, whereas
the regularity conditions assumed are those considered by
Breidt and Opsomer (2000, sec. 1.3) and reported in the Ap-
pendix. The value of the bandwidth h is considered fixed here
as for ˆ̄Ylp; a discussion on how to select values for h is deferred
to Section 6.4.

Theorem 3. Assume (A1)–(A7) in the Appendix. Then we
have the following results:

1. Asymptotic design unbiasedness and consistency. The

local polynomial model calibration estimator ˆ̄Ymc
lp is

asymptotically design unbiased in the sense that

limν→∞ E( ˆ̄Ymc
lp − Ȳ) = 0 with ξ -probability 1, and is

design-consistent in the sense that limν→∞ P(| ˆ̄Ymc
lp − Ȳ| <

ε) = 1 with ξ -probability 1 and for any fixed ε > 0.

2. Asymptotic normality. ( ˜̄Ymc
lp − Ȳ)/

√
V( ˜̄Ymc

lp ) → N(0,1),

as ν → ∞, where

V( ˜̄Ymc
lp ) = 1

N2

N∑

i

N∑

j

(πij − πiπj)
Ri

πi

Rj

πj
, (24)

with Ri = yi − m̃iβ̃lp, implies that

( ˆ̄Ymc
lp − Ȳ)

/√
V( ˜̄Ymc

lp ) → N(0,1). (25)

For the proof see the Appendix.

As for ˆ̄Ymc
nn , we now introduce a design-consistent estimator

of the variance of the asymptotic distribution of ˆ̄Ymc
lp , and con-

sequently modify the pivotal in (25) to account for this result.

Theorem 4. Assume that (A1)–(A7) in the Appendix hold.
Then

v( ˆ̄Ymc
lp ) = 1

N2

n∑

i

n∑

j

πij − πiπj

πij

ri

πi

rj

πj
, (26)

where ri = yi − m̂iβ̂lp, is design-consistent for V( ˜̄Ymc
lp ).

For the proof, see the Appendix.

Corollary 2. Assume that (A1)–(A7) in the Appendix hold.

Then, as ν → ∞, ( ˆ̄Ymc
lp − Ȳ)/

√
v( ˆ̄Ymc

lp ) → N(0,1).

Proof. The result follows from Theorem 4, for which

v( ˆ̄Ymc
lp )/V( ˜̄Ymc

lp ) converges in probability to 1.
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6. SIMULATION STUDIES

In this section we report on some simulation experiments
carried on to investigate the finite-sample performance of the
proposed estimators of Ȳ . To allow comparisons, the design
and structure of this investigation is taken from the simulation
study conducted by Breidt and Opsomer (2000), where a single
auxiliary variable is considered. Nevertheless, some features
have also been changed and introduced to provide new insights
into the topic. The simulation studies compare the behavior of
the following estimators of Ȳ :

ˆ̄Y , Horvitz–Thompson
ˆ̄Yc, Calibration–linear regression [see (2)]
ˆ̄Ymc

nn , Neural network model calibration [see (13)]
ˆ̄Ylp, Local polynomial regression [see (6)]
ˆ̄Ymc

lp , Local polynomial model calibration [see (21)].

The first two estimators are parametric estimators, in that they
assume a constant and a linear model for the regression func-
tion of the survey variable. The other estimators allow for more
complex modeling of the regression function. Nonparametric
estimators can be considered classes of estimators, because they
all depend on the values taken by different model selection pa-
rameters. Namely, local polynomial estimators depend on the
order of the local expansion, on the choice of the kernel func-
tion K, and of values taken by the bandwidth h. In contrast,
neural network estimators depend on the number of units in the
hidden layer M and the weight decay parameter λ, as shown in
(7) and (12). Because these parameters range over their allowed
values, different estimators of the mean are generated.

We consider model selection in a presampling perspective;
that is, the values of model selection parameters are determined
in advance and kept fixed in repeated sampling. Following
Breidt and Opsomer (2000), for local polynomial estimators,
local constant and local linear estimators have been consid-
ered; the Epanechninkov kernel, defined as K(t) = .75(1 − t2)

if |t| < 1 and K(t) = 0 otherwise, has been used for all ker-
nel based estimators with the same two different bandwidth
values, h = .1 and h = .25. The same values have been con-
sidered to compare results. Higher-order polynomials, such as
local quadratic or local cubic approximations, have not been
considered; although they provide a better approximation for
internal points, they pay the price of far more erratic behavior
on the boundaries and in presence of extreme values.

Along with bandwidth selection for local polynomials, the
choice of complexity parameters for neural networks has
always been a challenging issue. To better understand the
behavior of neural networks in this particular setting of model
calibration, the complexity parameters have been kept fixed
over repeated sampling and chosen to have quite a wide range
of possible scenarios; that is, we allowed λ and M to take dif-
ferent combination of values, to investigate their influence on
the efficiency of the resulting estimator. In the present work we
report on only five of them, to make reporting more tractable;
detailed results are available on request. We report on estima-
tors calculated by setting M = 2 and λ = 25e−4, M = 3 and
λ = 5e−3, M = 4 and λ = 5e−3, M = 6 and λ = 1e−2, and
M = 8 and λ = 1e−2 (see Ripley 1996, sec. 5.5, for rules on the

choice of λ). Values of M > 8 provide estimators whose perfor-
mance is virtually the same as when M = 8 is used, with λ kept
constant. Values of λ > 1e−2 for these nets provide the same
results as a small value for both M and λ, and thus these results
are not reported here. Neural networks have actually been fitted
by means of the R function nnet( ), which uses a quasi-Newton
optimizer, but other free and commercial software packages are
available. Values of the inputs and the output should be scaled
to the range [0,1] to aid convergence of the optimizer. The ac-
tivation function has been chosen to be logistic.

Survey variables have been generated according to eight dif-
ferent models. Each of these models is characterized by a uni-
variate regression function, or signal, that is, Eξ ( yk|x) = fk(x)
for k = 1, . . . ,8 and x ∈ R. We considered the following re-
gression functions:

Linear: f1(x) = 1 + 2(x − .5)

Quadratic: f2(x) = 1 + 2(x − .5)2

Bump: f3(x) = 1 + 2(x − .5) + exp(−200(x − .5)2)

Jump: f4(x) = 1 + 2(x − .5)I(x ≤ .65) + .65I(x > .65)

cdf: f5(x) = �((.5 − 2x)/.02), where � is the stan-
dard normal cdf

Exponential: f6(x) = exp(−8x)
Cycle1: f7(x) = 2 + sin(2πx)
Cycle4: f8(x) = 2 + sin(8πx),

with x ∈ [0,1]. Breidt and Opsomer (2000) described the choice
of such signals when the population values for x are generated
as iid uniform on [0,1] random variables. We considered this
scenario and a skewed distribution for x as well; that is, we
also conducted simulations for which the auxiliary variable is
iid from a beta distribution with expected value 2/7 and vari-
ance 7/196.

Population values for all survey variables but the fifth one
have been generated from the regression functions by adding
mean-0 normal errors with variance such that the signal-to-
noise ratio would approximately equal 4:1 for all populations.
This implies that approximately 20% of the variance of the sur-
vey variables is due to the error. The cdf population, in contrast,
consists of binary measurements generated from the linear pop-
ulation as y5i = I( y1i ≤ .5). Hence the finite population mean
of y5 is the population cdf of y1 at the point t = .5. Using the
same estimation strategy for continuous survey variables and
for a binary one could be debatable. Even though more suitable
networks can be chosen to account for a binary response, here
we use the same one for all populations, to allow comparisons.
The effective value of the proportion of variance due to noise is
defined as

VP = (S2
y − S2

f )/S2
y , (27)

where S2
y is the population variance of the survey variable and

S2
f is the population variance of the corresponding signal. For

each simulation, 1,000 samples of size n = 100 have been
drawn by simple random sampling from a population of size
N = 1,000 and the estimators calculated together with their

variance estimators. Given an estimator ˆ̄Y∗, its performance is
evaluated using the following quantities:

• Relative bias: RelB( ˆ̄Y∗) = (Ê( ˆ̄Y∗) − Ȳ)/Ȳ, where Ê de-
notes the Monte Carlo estimate of the expected value.
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• Scaled mean squared error (SMSE), defined as

SMSE( ˆ̄Y∗) = M̂SE( ˆ̄Y∗)
M̂SE( ȳ)VP

, (28)

where M̂SE is the Monte Carlo estimate of the MSE and
ȳ is the sample mean, that is, the Horvitz–Thompson esti-
mator for this design.

• Relative bias of a variance estimator: RelB(v( ˆ̄Y∗)) =
[̂E(v( ˆ̄Y∗)) − M̂SE( ˆ̄Y∗)]/M̂SE( ˆ̄Y∗).

Note that with SMSE( ˆ̄Y∗), we compare the MSE of an estimator
with its lowest possible value. In fact, the MSE of the sample
mean times the proportion of variance of y due to noise can be
considered the MSE of an ideal estimator that perfectly captures
the signal, and whose left variation is due only to the irreducible
error of the noise. Hence the smaller the value taken by SMSE,
the greater the efficiency of the estimator. We first report on
the study dealing with the auxiliary variable x generated from
a uniform distribution, and then move on to the one based on a
skewed variable x generated from a beta distribution.

6.1 Simulation With a Uniform x

Results for the SMSE of the estimators in this simulation are
reported in Table 1. The first row of the table gives the values
taken by VP for each population. Attention is focused on the be-
havior of the class of nonparametric estimators rather than on a
single estimator; that is, we are interested in the efficiency of the
class of estimators, irrespective of the choice of the complexity
parameters. It is well known that nonparametric methods are
usually sensible to the choice of such parameters, different val-
ues of which may lead to very different fitted values. Because
model selection may not be feasibly conducted for all survey
variables, when more than one variable is of concern, under-
standing the behavior of the estimators for a range of values of
the complexity parameters is of greater interest.

First, we note that neural network estimators all behave sim-
ilarly with respect to the choice of the number of units in the
hidden layer. In contrast, estimators based on local polynomi-
als are more erratic in correspondence of different values of the
bandwidth and of the order of the local fit. Overall, nonpara-
metric estimators lead to good gains in efficiency with respect
to the regression estimator in all populations but the linear one.
The SMSE values for the best nonparametric model calibration
estimators are always extremely close to 1 for most populations.
For the Cycle4 population, the regression function is extremely
complex (a sinusoid completing four full cycles on [0,1]), and
performance of the nonparametric estimators varies widely. The
more the complexity parameters allow approximation of more
complex functions, the greater the gain in efficiency. For neural
networks, this is clearly shown by the decrease in SMSE with
increasing M. The same is true for local polynomials with a
smaller bandwidth.

Last two columns in Table 1 give an indication when ro-
bustness over different populations is of interest. They report
the average value of SMSE over all populations (Ave8) and
after removing the last population (Ave7). First, we note that
neural network estimators are almost always more efficient
than the others, particularly when M is high. This is due to
the fact that most of the fitted values averaged over repeated
sampling obtained with neural networks are indistinguishable
from the real mean function. Differences are seen only for the
last population. Averaged fitted values are usually less well
behaved for local polynomials, and even with a small value
of the bandwidth, they cannot completely capture the patterns
of the last population; further details on this are available on
request.

Local polynomial model calibration estimators are on aver-
age slightly more efficient than the corresponding local poly-
nomial regression estimators, with substantial improvements
when fitted values are obtained with the large bandwidth and
a local constant fit. In this case, much of the error of the fits in

Table 1. SMSE of the Investigated Estimators for the Eight Populations and Averages Over the First Seven
and All of the Eight Populations—Uniform x

Linear Quad Bump Jump cdf Exp Cycle1 Cycle4 Ave7 Ave8

VP .201 .200 .218 .203 .327 .190 .178 .294
ȳ 4.970 5.000 4.583 4.933 3.060 5.258 5.603 3.396 4.772 4.600
ˆ̄Y c 1.029 5.177 1.602 1.196 1.208 3.151 2.896 3.320 2.323 2.448

ˆ̄Y mc
nn

M = 2, λ = 25e−4 1.085 1.024 1.104 1.089 1.146 1.126 1.086 2.741 1.094 1.300
M = 3, λ = 5e−3 1.074 1.018 1.167 1.089 1.140 1.127 1.084 2.129 1.100 1.229
M = 4, λ = 5e−3 1.075 1.016 1.136 1.094 1.138 1.127 1.085 1.315 1.096 1.123
M = 6, λ = 1e−2 1.060 1.016 1.244 1.086 1.123 1.133 1.080 .943 1.106 1.086
M = 8, λ = 1e−2 1.062 1.014 1.229 1.083 1.127 1.129 1.080 .898 1.103 1.078

ˆ̄Y mc
lp

p = 0, h = .1 1.085 1.066 1.078 1.077 1.138 1.236 1.114 1.233 1.113 1.128
p = 0, h = .25 1.072 1.234 1.322 1.090 1.110 1.633 1.421 3.383 1.269 1.533
p = 1, h = .1 1.191 1.050 1.114 1.115 1.145 1.204 1.164 1.238 1.140 1.153
p = 1, h = .25 1.070 1.023 1.352 1.064 1.102 1.215 1.116 3.287 1.134 1.404

ˆ̄Y lp
p = 0, h = .1 1.080 1.084 1.075 1.077 1.133 1.265 1.122 1.496 1.119 1.167
p = 0, h = .25 1.092 1.631 1.342 1.118 1.106 1.889 1.476 3.619 1.379 1.659
p = 1, h = .1 1.193 1.049 1.107 1.113 1.139 1.207 1.172 1.427 1.140 1.176
p = 1, h = .25 1.072 1.038 1.350 1.070 1.094 1.216 1.318 3.358 1.166 1.440

NOTE: The first row displays the proportion of the variance of the survey variables due to noise.
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estimating the regression function is due to bias: β̂lp takes value
on average substantially different from 1, and so the additional
calibration step provides some improvement in efficiency. This
is not so in the other cases.

Values of RelB are less than 1% for all estimators and thus
are not presented here. In contrast, variance estimators under-
estimate the Monte Carlo MSE in most cases, especially when
the nonparametric method overfits the data. In fact, because the
estimators of the variance are all based on residuals from the
fitted values, the harder the nonparametric method fits the data,
the smaller the residuals (and hence the variance estimator), the
smaller the generalization power, and hence the larger the MSE.
The relative bias ranges from 6% to 23% for most populations,
with the exception of the Cycle4 population, for which the rel-
ative bias increases up to 30%. Sample sizes larger than the one
considered here are likely required, to reduce underestimation
of the variance estimator.

6.2 Simulation With a Skewed x

Population values for the auxiliary variable in this simulation
have been generated from the beta distribution introduced ear-
lier. Results for the SMSE of the estimators, together with the
values taken by VP for each population, are reported in Table 2.
Relative biases of all estimators are again negligible.

In this case, differences are more striking. Neural network
estimators perform rather well across all populations, with a
small degree of variability over the different values of M and λ.
Their SMSE takes values close to 1 for most populations. Ex-
ceptions are observed only for the Cycle4 population. In con-
trast, the efficiency of local polynomial estimators varies widely
across populations and shows large losses in efficiency in sev-
eral cases. This is particularly true when we calculate fitted val-
ues by means of a local linear fit and the small bandwidth. The
performance of ˆ̄Ylp and ˆ̄Ymc

lp in this case is quite poor for all
populations. This may be explained by the fact that with this

positively skewed distribution there is a boundary of the sup-
port of x, and consequently of the survey variables, which is less
densely populated. Hence there are samples for which points on
the boundary do not provide a reasonable local approximation
when the bandwidth is too small. The additional regression step
performed by ˆ̄Ymc

lp with respect to ˆ̄Ylp again provides some im-
provement in efficiency. Variance estimators are still negatively
biased in all populations but the linear one. Relative bias usu-
ally takes values ranging from 5% to 24%, with a large value for
the Cycle4 population of about 43%. This relatively poor per-
formance suggests that further investigation on variance estima-
tion is needed for particularly complex regression functions.

6.3 Real Data Application

The mid-Atlantic highlands region includes the area from the
Blue Ridge Mountains in the east to the Ohio River in the west
and from the Catskill Mountains in the north to North Carolina
in the south. In the years 1993–1996 more than 500 stream
reaches across this region were sampled and visited, and some
revisited, to assess their condition in terms of the chemistry
and health of the biological organisms (EPA 2000). Among
the factors affecting stream condition, high concentrations of
nitrogen and phosphorus are symptoms of excessive nutrients
introduced into the stream. This phenomenon would likely in-
crease algal growth, thereby depleting the oxygen in the water
and choking out other forms of biota and significantly altering
the animal communities present. One possible cause of nutri-
ent enrichment in streams is agricultural fertilizer application
to fields. The proportion of land devoted to agriculture in a par-
ticular watershed can be obtained from remote sensing and thus
is available for all stream locations without the need to go on-
site. A square-root transformation of this independent variable
overcomes the problem of concentration of points on small val-
ues. Figure 2 gives scatterplots of total nitrogen (NTL) and to-
tal phosphorus (PTL) concentrations with respect to the square
root of the proportion of agricultural land (AG) for 574 streams.

Table 2. SMSE of the Investigated Estimators for the Eight Populations and Averages Over the First Seven
and All of the Eight Populations—Skewed x

Linear Quad Bump Jump cdf Exp Cycle1 Cycle4 Ave7 Ave8

VP .202 .230 .208 .197 .385 .172 .182 .197
ȳ 4.949 4.347 4.797 5.078 2.598 5.805 5.481 5.084 4.722 4.767
ˆ̄Y c 1.002 1.930 1.580 .963 1.223 2.758 4.030 4.981 1.927 2.308

ˆ̄Y mc
nn

M = 2, λ = 25e−4 1.024 .918 1.193 1.003 1.058 1.264 1.125 4.186 1.084 1.471
M = 3, λ = 5e−3 1.019 .914 1.222 .987 1.052 1.268 1.115 3.400 1.082 1.372
M = 4, λ = 5e−3 1.024 .915 1.205 .997 1.056 1.262 1.116 2.195 1.082 1.221
M = 6, λ = 1e−2 1.010 .911 1.245 .984 1.046 1.261 1.111 1.616 1.081 1.148
M = 8, λ = 1e−2 1.009 .912 1.233 .988 1.045 1.260 1.111 1.535 1.080 1.137

ˆ̄Y mc
lp

p = 0, h = .1 1.148 .990 1.088 1.173 1.049 1.364 1.137 2.040 1.136 1.249
p = 0, h = .25 1.073 1.264 1.419 1.040 1.150 1.911 1.626 5.018 1.355 1.813
p = 1, h = .1 1.629 1.404 1.585 2.574 1.040 3.471 1.883 2.023 1.941 1.951
p = 1, h = .25 1.033 .937 1.317 1.168 1.066 1.379 1.306 4.948 1.172 1.644

ˆ̄Y lp
p = 0, h = .1 1.157 1.020 1.107 1.192 1.049 1.446 1.171 2.394 1.163 1.317
p = 0, h = .25 1.336 1.652 1.605 1.387 1.220 2.527 2.025 5.420 1.679 2.146
p = 1, h = .1 1.631 1.403 1.557 2.610 1.038 3.530 1.849 2.274 1.945 1.986
p = 1, h = .25 1.036 .953 1.338 1.171 1.069 1.384 1.339 5.065 1.184 1.669

NOTE: The first row displays the proportion of the variance of the survey variables due to noise.
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(a) (b)

Figure 2. Scatterplots for the (a) NTL and (b) PTL Concentrations, With Respect to the Square Root of the Proportion of Agricultural Land.

Only the first visit for each stream has been considered. Despite
the presence of numerous influential observations, a linear re-
gression model would seem adequate to determine the relation-
ship of PTL and AG. In contrast, a more complex structure to
determine the relationship of NTL and AG might be consid-
ered. To investigate whether nonparametric model calibration
could be of use in such a context, we conducted a simulation
study. In particular, we considered the set of N = 574 streams
as a finite population for which NTL and PTL are survey vari-
ables of interest. Moreover, AG can be considered an auxiliary
variable whose value is available for each unit in the popula-
tion from remote sensing. For each survey variable, we selected
5,000 random samples without replacement of n = 100 units.
For each sample, we calculated and evaluated the performance
of the same set of estimators considered in the previous section.
Because the true mean function in the relationship between the
survey variables and the auxiliary variable is unknown, the rel-
ative efficiency of the estimators is defined as

Eff ( ˆ̄Y∗) = M̂SE( ˆ̄Y∗)
/

M̂SE( ˆ̄Yc). (29)

Table 3 gives the values of the efficiency for both survey vari-
ables. Good gains in efficiency with respect to the calibration
estimator are provided for NTL by all neural network estimators
almost independent of the choice of the complexity parameters.
Moreover, negligible losses in efficiency are shown for PTL. In
contrast, estimators based on local polynomials provide almost

the same good performance as that of ˆ̄Ymc
nn in all cases but one.

When fitted values are obtained through a local linear fit with

a small bandwidth, the performance of the resulting estimators
is really poor. This behavior can be explained by the presence
of extreme points that, when sampled and considered in a local
linear fit with few observations, provide unreasonable approx-
imations. ˆ̄Ymc

lp does not perform much better than ˆ̄Ylp, because
inefficiency in this situation is a consequence of overfitting the
data. This problem is overcome by kernel approximations by
means of a more robust local constant fit.

Table 3. Efficiency of the Investigated Estimators for
the NTL and PTL Survey Variables With Respect to

the Calibration Estimator [eq. (29)]

NTL PTL

ȳ 1.289 1.033
ˆ̄Y c 1.000 1.000

ˆ̄Y mc
nn

M = 2, λ = 25e−4 .809 1.007
M = 3, λ = 5e−3 .803 1.004
M = 4, λ = 5e−3 .802 1.004
M = 6, λ = 1e−2 .803 1.001
M = 8, λ = 1e−2 .802 1.001

ˆ̄Y mc
lp

p = 0, h = .1 .812 1.084
p = 0, h = .25 .812 1.021
p = 1, h = .1 9.390 1.928
p = 1, h = .25 .830 1.019

ˆ̄Y lp
p = 0, h = .1 .830 1.036
p = 0, h = .25 .845 1.011
p = 1, h = .1 9.610 1.976
p = 1, h = .25 .835 1.015
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6.4 Model Selection for Nonparametric Model Calibration

In this work, complexity parameters for both ˆ̄Ymc
nn and ˆ̄Ymc

lp
have been considered as fixed quantities. This means that for
local polynomials, for example, the value of h used to compute
population fits in (23) is the same one used to compute sample
fits in (5). In other words, here (as in Breidt and Opsomer 2000)
the issue of how to best select a value for h from sample data
has not been addressed as that of selecting M and λ for neural
networks.

While revising this article, we became aware of a work by
Opsomer and Miller (2004) addressing this issue for the lo-
cal polynomial regression estimator ˆ̄Ylp. An optimal bandwidth

value is defined to minimize the design MSE of ˆ̄Ylp. This value
does not have an explicit expression and thus is computed
through simulation. A grid of values for h is considered, and the
efficiency of the corresponding estimators is computed through
repeated sampling. A cross-validation criterion modified to ac-
count for the design is then adopted to estimate this quantity

from sample data. ˆ̄Ylp shows sample fits that can be written as a
linear combination of yi’s, with weights that do not depend on
the survey variable [see (5)]. This allows us to avoid computing
such weights at each step of the leave-one-out procedure.

As described at the beginning of Section 6, we tried a wide
range of values for M and λ and then kept them fixed over re-
peated sampling. This approach is the same as that followed by
Opsomer and Miller (2004) to determine the optimal bandwidth
value. However, fitted values used in ˆ̄Ymc

nn are not linear com-
binations of the yi’s. This would require their computation at
each leave-one-out step of the cross-validation procedure used
to estimate such optimal values. This greatly increases the com-
putational burden of the procedure. We are currently studying
a modification of such cross-validation criterion for application
to neural network nonparametric model calibration. We will re-
port this elsewhere, along with an application of this procedure
to ˆ̄Ymc

lp and an investigation into the effects on its asymptotic
properties.

7. CONCLUDING REMARKS

We have proposed and studied an application of nonparamet-
ric methods to the model calibration approach introduced by
Wu and Sitter (2001) to the use of complete auxiliary informa-
tion in complex surveys for estimating totals and means. Our
application allows more flexible modeling by assuming more
general models and uses nonparametric methods to obtain the
fitted values on which to calibrate. We adopt neural network
learning and local polynomial smoothing to estimate the func-
tional relationship between the survey variable and the auxil-
iary variables. The resulting estimators are defined to account
for the sampling design and are proven to be design-consistent.
The moments of the asymptotic distribution are also derived,
and a consistent estimator of the variance of each distribution is
then proposed.

We investigated the performance of the proposed estimators
for finite size samples through two simulation studies. We com-
pared nonparametric model calibration estimators with non-
parametric regression estimators and classical parametric ones
and explore the effects of different distributions of the survey

variables. Gains in efficiency with respect to the classical re-
gression estimator are provided in all cases by neural network
estimators, except when sampling from a linear population.
An important pattern shown by neural networks is that once
a weight decay parameter is included in the learning procedure,
fitted values calculated using different numbers of units in the
hidden layer provide estimators that display very similar be-
haviors. This is an interesting robustness result that puts less
emphasis on model selection for neural networks; they exhibit
very good performance even if the same structure is used for
all populations. Different performance is exhibited only when
approximating extremely complex functions.

In contrast, local polynomial estimators are much more sen-
sible to the choice of the bandwidth value and the type of lo-
cal approximation. Efficiency of the resulting estimators varies
widely according to the selected values of the complexity para-
meters. The same structure may not be efficient enough for all
survey variables, possibly leading to poor robustness. The local
polynomial model calibration estimator has been shown to be
more efficient than the corresponding local polynomial regres-
sion estimator when the regression function is estimated with
bias. The calibration step performed by the model calibration
estimator in this case recovers the efficiency lost by the approx-
imating technique.

We have considered fixed values of M and λ for neural net-
works and of h for local polynomials over repeated sampling.
The issue of theoretically optimal and practical selection of
these values is of clear interest and optimality has to be defined
in this context with respect to the design-based MSEs of the
proposed estimators. Investigation in this regard will hopefully
provide general guidelines. However, as noted previously, this
issue seems to be less important for neural networks.

Simulation studies have been performed with one covariate.
However, neural networks can easily accommodate multiple co-
variates, and we are currently investigating the performance
of the proposed neural network estimator when applied to
multivariate auxiliary information. This popular learning tech-
nique, although computer-intensive, works amazingly well in
the presence of many records and many auxiliary variables.
This would favor its application in survey organizations when
auxiliary information at an individual level can be recovered;
other circumstances than the one explored in this article through
remote sensing also arise for survey organizations any time
record linkage can be efficiently conducted between survey
and census-level data. These situations are becoming more and
more common, and the methods proposed here provide tools
for using this type of complete information more efficiently.

APPENDIX: PROOFS AND
REGULARITY CONDITIONS

Lemma A.1. Assume that (a)–(g) hold. Partition the parameter
space as in Remark 3 and restrict to 	1, say. Then the design-based
estimator of θ̃ obtained by (12) is such that θ̂ = θ̃ + Op(n−1/2), where
subscript 1 is dropped for ease of notation.

Proof. The proof is adapted from work of Wu (1999), who estab-
lished this lemma for population parameters defined by estimating
equations. First, θ̃ and θ̂ are weighted least squares estimates for a
nonlinear function f (·). Existence of a solution to both (11) and (12)
is then guaranteed by continuity of f (·) and compactness of the pa-
rameter space (Wu 1981). Restricting the parameter space to a subset
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	1 of 	 built as in Remark 3 provides uniqueness of both θ̃ and θ̂ .
For ease of notation, we rewrite (11) and (12) as

∑N
i=1 ζ ( yi,xi; θ) = 0

and
∑n

i=1 diζ ( yi,xi; θ) = 0. We can apply a Taylor series expansion

to N−1 ∑N
i=1 ζ ( yi,xi; θ̂) at θ̂ = θ̃ . We have

N−1
N∑

i=1

ζ ( yi,xi; θ̂)

= N−1

{ N∑

i=1

∂ζ ( yi,xi; θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}′
(θ̂ − θ̃) + op(θ̂ − θ̃). (A.1)

By assumptions (c)–(e), and thus Remark 2, we have that

N−1
n∑

i=1

diζ ( yi,xi; θ) = N−1
N∑

i=1

ζ ( yi,xi; θ) + Op
(
n−1/2)

. (A.2)

Equation (A.2) calculated at θ = θ̂ simplifies to N−1 ∑N
i=1 ζ ( yi,xi;

θ̂) = Op(n−1/2). The argument follows because by assumption (c),
continuity of f (·) and compactness of the support of the xi’s and of the
restricted parameter space, N−1 ∑N

i=1 ∂ζ ( yi,xi; θ)/∂θ |
θ=θ̃

= O(1).

Lemma A.2. Assume that (a)–(g) hold. Partition the parameter
space as in Remark 3 and restrict to 	1, say. Then N−1 ∑N

i=1 f̂i −
N−1 ∑n

i=1 di f̂i = Op(n−1/2).

Proof. Let us apply a Taylor series expansion to f̂i = f (xi, θ̂) at
θ̂ = θ̃ . We obtain

f (xi, θ̂) = f (xi, θ̃) +
{

∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}′
(θ̂ − θ̃) + op(θ̂ − θ̃).

Now, by continuity of the function f and compactness of the support
of the xi’s and of the restricted parameter space, we have that

∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

= O(1). (A.3)

Hence, by Lemma A.1, we have

N−1
N∑

i=1

f̂i = N−1
N∑

i=1

f̃i + Op
(
n−1/2)

(A.4)

and

N−1
n∑

i=1

di f̂i = N−1
n∑

i=1

di f̃i + Op
(
n−1/2)

. (A.5)

By assumptions (c)–(e), we also have N−1 ∑N
i=1 f̃i −N−1 ∑n

i=1 di f̃i =
Op(n−1/2). This relation, together with (A.4) and (A.5), implies the
argument.

Lemma A.3. Assume that (a)–(g) hold. Partition the parameter
space as in Remark 3 and restrict to 	1, say. Then N−1 ∑N

i=1 f̂i −
N−1 ∑n

i=1 di f̂i = N−1 ∑N
i=1 f̃i − N−1 ∑n

i=1 di f̃i + Op(n−1).

Proof. Consider a second-order Taylor series expansion of f (xi, θ̂)

at θ̂ = θ̃ . Similarly to (A.3), we have that ∂2f (xi, θ)/∂θ ∂θ ′|
θ=θ̃

=
O(1). This statement, together with (A.3) and Lemma A.1, implies
that

N−1
N∑

i=1

f̂i

= N−1
N∑

i=1

f̃i + N−1

{ N∑

i=1

∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}′
(θ̂ − θ̃) + Op(n−1)

and

N−1
n∑

i=1

di f̂i

= N−1
n∑

i=1

di f̃i + N−1

{ n∑

i=1

di
∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}′
(θ̂ − θ̃) + Op(n−1).

By assumptions (c)–(e),

N−1

{ N∑

i=1

∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}

− N−1

{ n∑

i=1

di
∂f (xi, θ)

∂θ

∣
∣
∣
∣
θ=θ̃

}

= Op
(
n−1/2)

.

Hence, by subtracting (A.5) from (A.4), the argument follows.

Lemma A.4. Assume that (a)–(g) hold. Partition the parameter
space as in Remark 3 and restrict to 	1, say. Then β̂nn = β̃nn +
Op(n−1/2).

Proof. We can rewrite β̃nn as

β̃nn = N−1 ∑N
i=1 qi f̃iyi − N−1 ∑N

i=1 qi f̄ Ȳ

N−1 ∑N
i=1 qi f̃ 2

i − N−1 ∑N
i=1 qi f̄ 2

and rewrite β̂nn as

β̂nn = N−1 ∑n
i=1 diqi f̂iyi − N−1 ∑n

i=1 diqi f̆ y̆

N−1 ∑n
i=1 diqi f̂ 2

i − N−1 ∑n
i=1 diqi f̆ 2

. (A.6)

Hence β̃nn can be seen as a function of population means. Each com-
ponent of β̂nn as written in (A.6) is a

√
n-consistent estimator of each

of these means under the assumed regularity conditions, and the argu-
ment follows. Details are available on request.

Proof of Theorem 1

1. Design consistency. Let us consider the estimator introduced
in (18). Being a generalized difference-type estimator, it is unbiased
and consistent for Ȳ for assumptions (c)–(e). Now, ˆ̄Ymc

nn converges in
probability to ˜̄Ymc

nn because, by Lemmas A.3 and A.4, we can rewrite
ˆ̄Ymc

nn as

ˆ̄Ymc
nn = ˆ̄Y +

{

N−1
N∑

i=1

f̃i − N−1
n∑

i=1

di f̃i

}

β̃nn + Op(n−1)

(A.7)
= ˜̄Ymc

nn + Op(n−1).

Therefore, ˆ̄Ymc
nn converges in probability to Ȳ , and the argument fol-

lows.
2. Asymptotic normality. Convergence in probability implies con-

vergence in distribution; therefore, ˆ̄Ymc
nn inherits the limiting distribu-

tion of ˜̄Ymc
nn . A central limit theorem can be established for ˜̄Ymc

nn from
assumptions (c)–(e), and the result is established.

Proof of Theorem 2

Being the design variance of the Horvitz–Thompson estimator of
the mean of the population residuals yi − f̃iβ̃nn, we have that V( ˜̄Ymc

nn ) =
O(n−1). Hence it suffices to show that v( ˆ̄Ymc

nn ) − V( ˜̄Ymc
nn ) = op(n−1).

Let us consider the following estimator of V( ˜̄Ymc
nn ):

v( ˜̄Ymc
nn ) = 1

N2

n∑

i

n∑

j

πij − πiπj

πij

yi − f̃iβ̃nn

πi

yj − f̃jβ̃nn

πj
.

From assumption (e), v( ˜̄Ymc
nn ) − V( ˜̄Ymc

nn ) = op(n−1). Because eiej =
( yi − f̃iβ̃nn)( yj − f̃jβ̃nn) + Op(n−1/2) by Lemma A.4 and f̂i =
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Montanari and Ranalli: Nonparametric Calibration Estimation 1441

f̃i + Op(n−1/2) from Lemma A.2, v( ˆ̄Ymc
nn ) = v( ˜̄Ymc

nn )+ op(n−3/2), and
the argument follows.

Regularity Conditions for Theorem 3

(A1) For each ν, the xi, for i = 1, . . . ,N, are iid F(x) = ∫ x
−∞ g(t)dt,

where g(·) is a density with compact support [ax,bx] and g(x) > 0 for
all x ∈ [ax,bx].

(A2) For each ν, the xi are considered fixed with respect to the
superpopulation model ξ assumed in (4). The errors εi are independent
and have mean 0, variance v(xi), and compact support, uniformly for
each ν.

(A3) The mean function m(·) is continuous and has p + 1 continu-
ous derivatives, where p is the order of the local polynomial function.
The variance function v(x) is continuous and strictly positive.

(A4) The kernel K(·) has compact support [−1,1], is symmetric
and continuous, and satisfies

∫ 1
−1 K(u)du = 1.

(A5) As ν → ∞, nN−1 → π ∈ (0,1), the bandwidth hν → 0 and
Nh2

ν/(log log N) → ∞.
(A6) For each ν, mini∈U πi ≥ λ > 0, mini,j∈U πij ≥ λ∗ > 0, and

lim sup
ν→∞

n max
i,j∈U : i �=j

|πij − πiπj| < ∞.

(A7) Additional assumptions involving higher-order inclusion
probabilities are

lim
ν→∞ n2 max

(i1,i2,i3,i4)∈D4,N

∣
∣E

[(
δi1 − πi1

)(
δi2 − πi2

)

× (
δi3 − πi3

)(
δi4 − πi4

)]∣
∣ < ∞,

where Dt,N denotes the set of all distinct t-tuples (i1, i2, . . . , it)
from U ,

lim
ν→∞ max

(i1,i2,i3,i4)∈D4,N

∣
∣E

[(
δi1δi2 − πi1i2

)(
δi3δi4 − πi3i4

)]∣
∣ = 0,

and

lim sup
ν→∞

n max
(i1,i2,i3)∈D3,N

∣
∣E

[(
δi1 − πi1

)2(
δi2 − πi2

)(
δi3 − πi3

)]∣
∣ < ∞.

Proof of Theorem 3

1. Asymptotic design unbiasedness and consistency. By the Markov

inequality, it suffices to show that limν→∞ E| ˆ̄Ymc
lp − Ȳ| = 0. Write

ˆ̄Ymc
lp − Ȳ =

N∑

i=1

yi − m̃iβ̃lp

N

(
δi

πi
− 1

)

+
N∑

i=1

m̃iβ̃lp − m̂iβ̂lp

N

(
δi

πi
− 1

)

. (A.8)

By rewriting the right side of (A.8), we have that

E| ˆ̄Ymc
lp − Ȳ|

≤ E

∣
∣
∣
∣
∣

N∑

i=1

yi − m̃iβ̃lp

N

(
δi

πi
− 1

)∣
∣
∣
∣
∣

(A.9)

+ E

∣
∣
∣
∣
∣
(β̃lp − β̂lp)

N∑

i=1

m̃i

N

(
δi

πi
− 1

)∣
∣
∣
∣
∣

+
{

E

( N∑

i=1

(m̂i − m̃i)
2

N

)

E

(

β̂2
lp

N∑

i=1

(1 − π−1
i δi)

2

N

)}1/2

.

First note that under assumptions (A1)–(A6), β̃lp is uniformly bounded

and β̂lp is uniformly bounded in s. Then, under (A1)–(A6) and

using the fact that lim supν→∞ N−1 ∑N
i=1( yi − m̃iβ̃lp)2 < ∞ by

lemma 2(iv) of Breidt and Opsomer (2000), the first term on the right
side of (A.9) converges to 0 as ν → ∞, following the argument of
theorem 1 of Robinson and Särndal (1983). By the Cauchy–Shwartz
inequality, the second term on the right side of (A.9) is dominated by

{

E(β̂lp − β̃lp)2E

[ N∑

i=1

m̃i

N

(
δi

πi
− 1

)]2}1/2

;

this converges to 0 because lim supν→∞ E(β̂lp − β̃lp)2 < ∞ for
bounding arguments and, using the fact that lim supν→∞ m̃2

i < ∞,

the second factor converges to 0, following the argument of theorem 1
of Robinson and Särndal (1983). Let us consider the third term on the
right side of equation (A.9),

E

[

β̂2
lp

N∑

i=1

(1 − π−1
i δi)

2

N

]

≤
{

E(β̂4
lp)E

N∑

i=1

(1 − π−1
i δi)

4

N2

}1/2

.

Because β̂nn is uniformly bounded in s, lim supν→∞ E(β̂4
lp) < ∞.

Moreover,

lim
ν→∞ E

∑N
i=1(1 − π−1

i δi)
4

N2
= 0

for bounding arguments on πi. Combining this with the fact that
limν→∞ N−1 ∑N

i=1(m̂i −m̃i)
2 = 0 by lemma 4 of Breidt and Opsomer

(2000), the third term in (A.9) converges to 0, and the theorem follows.
2. Asymptotic normality. From (A.8), it is clear that

ˆ̄Ymc
lp − ˜̄Ymc

lp =
N∑

i=1

m̃iβ̃lp − m̂iβ̂lp

N

(
δi

πi
− 1

)

.

The right side of this equation can be written as

(β̃lp − β̂lp)

N∑

i=1

m̃i

N

(
δi

πi
− 1

)

+ β̂lp

N∑

i=1

m̃i − m̂i

N

(
δi

πi
− 1

)

. (A.10)

Now, because m̂i − m̃i = op(1) from lemma 4 of Breidt and Opsomer
(2000), β̃lp − β̂lp = op(1) for an argument similar to that of Lemma A.4
here. Moreover, N−1 ∑N

i=1 m̃i(δi/πi − 1) = Op(n−1/2) and N−1 ×
∑N

i=1(m̃i − m̂i)(δi/πi − 1) = op(n−1/2) from the proof of theorem 2
of Breidt and Opsomer (2000). Therefore, the term in (A.10) is of
order op(n−1/2) and the argument follows.

Proof of Theorem 4

The result follows from arguments similar to those provided to
prove Theorem 2 by noting that rirj = RiRj +op(1), because m̂i −m̃i =
op(1) and β̂lp − β̃lp = op(1) from the proof of Theorem 3. Moreover,
consistency of the Horvitz–Thompson variance estimator is guaran-
teed by assumptions (A6) and (A7); see, for example, the proof of
theorem 3 of Breidt and Opsomer (2000).

[Received February 2003. Revised December 2004.]

REFERENCES

Barron, A. R. (1993), “Universal Approximation Bounds for Superpositions
of a Sigmoidal Function,” IEEE Transactions on Information Theory, 39,
930–945.

Breidt, F. J., and Opsomer, J. D. (2000), “Local Polynomial Regression Estima-
tors in Survey Sampling,” The Annals of Statistics, 28, 1026–1053.

Chambers, R. L. (1996), “Robust Case-Weighting for Multipurpose Establish-
ment Surveys,” Journal of Official Statistics, 12, 3–32.

(1998), “Weighting and Calibration in Sample Survey Estimation,” in
Proceedings of a Conference on Statistical Science Honouring the Bicenten-
nal of Stefano Franscini’s Birth, eds. C. Malaguerra, S. Morgenthaler, and
E. Ronchetti, Basel: Birhauser-Verlag.

Chambers, R. L., Dorfman, A. H., and Wehrly, T. E. (1993), “Bias Robust Es-
timation in Finite Populations Using Nonparametric Calibration,” Journal of
the American Statistical Association, 88, 268–277.

D
ow

nl
oa

de
d 

by
 [

N
IH

 L
ib

ra
ry

] 
at

 1
2:

02
 2

0 
D

ec
em

be
r 

20
13

 



1442 Journal of the American Statistical Association, December 2005

Cybenko, G. (1989), “Approximation by Superpositions of a Sigmoidal Func-
tion,” Mathematics of Control Signals, and Systems, 2, 303–314.

Deville, J. C., and Särndal, C. E. (1992), “Calibration Estimators in Survey
Sampling,” Journal of the American Statistical Association, 87, 376–382.

Di Ciaccio, A., and Montanari, G. E. (2001), “A Nonparametric Regression
Estimator of a Finite Population Mean,” in Book of Short Papers, CLADAG
2001, eds. Instituto di Statistica, Facoltà di Economia, Universitá degli Studi,
Palermo, pp. 173–176.

Dorfman, A. H. (1992), “Nonparametric Regression for Estimating Totals in
Finite Population,” in Proceedings of the Survey Research Methods Section,
American Statistical Association, pp. 622–625.

Dorfman, A. H., and Hall, P. (1993), “Estimators of the Finite Population Distri-
bution Function Using Nonparametric Regression,” The Annals of Statistics,
21, 1452–1475.

EPA (2000), Mid-Atlantic Highlands Streams Assessment, EPA/903/R-00/015,
Philadelphia: U.S. Environmental Protection Agency Region 3.

Friedman, J. H. (1994), “An Overview of Predictive Learning and Function
Approximation,” in From Statistics to Neural Networks, eds. V. Cherkassky,
J. Friedman, and H. Wechsler, Berlin: Springer-Verlag.

Fuller, W. A. (1975), “Regression Analysis for Sample Survey,” Sankhyā,
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